2017台州国家公务员考试行测—余数相关的四类题型
台州公务员考试网提醒您关注2017年浙江公务员考试
2017年国考即将拉开序幕,致力于参加2017国考的各位考生们想必也早早展开了复习。众所周知,行测考试题型多、题量大、时间紧,而数量关系这个模块则让人尤为头疼。其中涉及的数字推理,规律难寻,常常让人摸不到头脑;而数学运算题型,计算繁琐,容易出错,题目较多,也是块难啃的骨头。有许多考生抱着放弃的态度,总要等到交卷的最后时刻匆匆猜测几道。所以,要想数量关系有一定的提高,仅靠短期的突击或者临场发挥是难以得到的。在数量计算时,有时一个数除以不同的数得到对应的余数,然后让我们求这个数,很多考生拿到这样的题目之后或是一筹莫展或是随便选答案,这都说明没有掌握好这种题目的解题方法,这类问题其实就是需要运用余数相关定理解决的问题。以下为大家详细讲解。
一、和同加和
一个数除以不同的数得到不同余数,如果每个式子除数与余数的和相同,那么这个数等于这几个除数的最小公倍数的整数倍再加上除数与余数的和,记做和同加和。
例:某歌舞团在大厅列队排练,若排成7排则多2人,排成5排则多4人,排成6排则多3人,问该歌舞团共有多少人?
A.102 B.108 C.115 D.219
【分析】
本题可以明显发现有:除数与余数只和均为9,可以利用和同加和原理,7、5、6的最小公倍数是210,直接写出总人数的表达式210n+9,代入选项,选答案D。
二、差同减差
一个数除以不同的数得到不同余数,如果每个式子除数减余数的差相同,那么这个数等于这几个除数的最小公倍数的整数倍再减去除数与余数的差,记做差同减差。
例:三位运动员跨台阶,台阶总数在100-150级之间,第一位运动员每次跨3级台阶,最后一步还剩2级台阶。第二位运动员每次跨4级台阶,最后一步还剩3级台阶。第三位运动员每次跨5级台阶,最后一步还剩4级台阶。问:这些台阶总共有多少级?
A.119 B.121 C.129 D.131
【分析】
本题可以发现:每位运动员跨的台阶数与剩下台阶数之差均为1,可以直接用差同减差,3、4、5的最小公倍数是60,台阶数就可以表示为60n-1,代入选项验证,可以选出答案A。
三、余同加余
一个数除以不同的数得到相同的余数,那么这个数等于这几个除数的最小公倍数的整数倍再加上他们相同的余数,记做余同加余。
例:三位的自然数N满足:除以6余3,除以5余3,除以4也余3,则符合条件的自然数N有几个?
A.8 B.9 C.15 D.16
【分析】
本题是一个数除以不同的数得到相同的余数,让我们求这个数,根据中国剩余定理可以直接把这个数表示出来,4、5、6的最小公倍数是60,可以算出N=60n+3,根据题目已知的条件N是一个三位数,又因为n是整数,所以n可以取2到16的所有整数,共15个数,选答案C。
四、其它情况
对于不满足上面三种情况的题目,我们可以采用两种方法来解决:逐步满足法和代入排除法。
例:大年三十彩灯悬,灯火齐明光灿灿,盏盏数来有穷尽,五五数时剩一盏,七七数时恰恰完,八八数时还缺三,请你自己算一算,彩灯至少多少盏?
A、21 B、27 C、36 D、42
【分析】
方法一,逐步满足法。先找出满足被5除余数为1的最小数为1,然后在1的基础上每次都加5直到满足被8除时余数为5,再验证是否能被7整除,1+5+5+5+5=21,而21刚好能被7整除,故彩灯至少有21盏。
方法二,代入排除法。题干说明灯的数目能被7整除,被5除余数为1,被8除余数为5。结合选项运用整除特性,直接选择A。
提醒各位考生,8月份是国考备考的重要时期,考生一定要把握这难得的学习时机,抓紧时间,保证个人的学习状态,严格按照个人的学习计划进行。以争取优异的成绩。
更多台州公务员考试招考信息请登入台州公务员考试网
关于公考政策、图书、课程可以咨询管理员:
【 QQ群每日发送公告及备考资料】 微信公众号:tzoffcn 【每日更新最新活动、公考、事业单位招聘信息等】
-
微信公众号:台州中公教育
(ID:tzoffcn)
专注台州招聘资讯及备考学习资料推送